Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 995344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120378

RESUMO

Salvia chinensia Benth (Shijianchuan in Chinese, SJC) has been used as a traditional anti-cancer herb. SJC showed good anti-esophageal cancer efficacy based on our clinical application. However, the current research on SJC is minimal, and its anti-cancer effect lacks scientific certification. This study aims to clarify the inhibitory effect of SJC on esophageal cancer and explore its underlying mechanism. Q-Orbitrap high-resolution LC/MS was used to identify the primary chemical constituents in SJC. Cell proliferation and colony formation assays showed that SJC could effectively inhibit the growth of esophageal tumor cells in vitro. To clarify its mechanism of action, proteomic and bioinformatic analyses were carried out by combining tandem mass labeling and two-dimensional liquid chromatography-mass spectrometry (LC-MS). Data are available via ProteomeXchange with identifier PXD035823. The results indicated that SJC could activate AMPK signaling pathway and effectively promote autophagy in esophageal cancer cells. Therefore, we further used western blotting to confirm that SJC activated autophagy in esophageal cancer cells through the AMPK/ULK1 signaling pathway. The results showed that P-AMPK and P-ULK1 were significantly up-regulated after the treatment with SJC. The ratio of autophagosomes marker proteins LC3II/I was significantly increased. In addition, the expression of the autophagy substrate protein P62 decreased with the degradation of autophagosomes. Using lentiviral transfection of fluorescent label SensGFP-StubRFP-LC3 protein and revalidation of LC3 expression before and after administration by laser confocal microscopy. Compared with the control group, the fluorescence expression of the SJC group was significantly enhanced, indicating that it promoted autophagy in esophageal cancer cells. Cell morphology and the formation of autophagosomes were observed by transmission electron microscopy. Our study shows that the tumor suppressor effect of SJC is related to promoting autophagy in esophageal tumor cells via the AMPK/ULK1 signaling pathway.

2.
Front Cell Dev Biol ; 9: 674919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046411

RESUMO

Hepatocellular carcinoma (HCC) is the 6th most prevalent cancer and the 4th leading cause of cancer-related death worldwide. Mechanisms explaining the carcinogenesis of HCC are not clear yet. In recent years, rapid development of N6-methyladenosine (m6A) modification provides a fresh approach to disclosing this mystery. As the most prevalent mRNA modification in eukaryotes, m6A modification is capable to post-transcriptionally affect RNA splicing, stability, and translation, thus participating in a variety of biological and pathological processes including cell proliferation, apoptosis, tumor invasion and metastasis. METTL3 has been recognized as a pivotal methyltransferase and essential to the performance of m6A modification. METTL3 can regulate RNA expression in a m6A-dependent manner and contribute to the carcinogenesis, tumor progression, and drug resistance of HCC. In the present review, we are going to make a clear summary of the known roles of METTL3 in HCC, and explicitly narrate the potential mechanisms for these roles.

3.
ACS Omega ; 2(3): 873-889, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023617

RESUMO

Self-labeled inhibitors (SLIs) are promising for creating links, ranging from cancer therapy and metastatic pathways to mechanistic elucidation. In this study, a new category of "two-in-one" fluorescent xanthone inhibitors was developed for the systematic evaluation of anticancer activity and the selective imaging of cytoplasm in vitro. These xanthone inhibitors presented high fluorescent brightness, working over a wide pH range enabled by a "switchable reaction" of the heterocyclic backbone. The strength and nature of fluorescence were probed via spectroscopic methods and density functional theory calculations on the molecular level, respectively. Along with the potent anticancer activity, which was demonstrated using MTT and clonogenic assays with high fluorescent brightness in the cytoplasm, SLI 3fd could be established as a modeled self-monitoring drug in cancer therapy.

4.
J Cosmet Sci ; 62(5): 483-503, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22152493

RESUMO

Ferulic acid (F.A) receives significant interest in the beauty industry with regard to its skin-whitening and anti-oxidant properties. However, its use in cosmetics is limited due to pH- and temperature-related instabilities. In this study, we investigated the stability of F.A in eight different prototype formulae. The results confirmed that in our conditions the stability of F.A is pH- and temperature-related. Additionally, the nature of the solvent dipropylene glycol (DPPG) showed a capacity to stabilize F.A. A series of experiments was further planned for studying the mechanism of degradation of F.A. In a prototype of a cosmetic medium, F.A degrades first through a decarboxylation step, leading to 4-hydroxy-3-methoxystyrene (PVG). Further, F.A and PVG are both involved in an additional reaction, resulting in the trans-conjugation dimer of PVG. The consequences of these results in formulating F.A are discussed.


Assuntos
Cosméticos/química , Ácidos Cumáricos/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Humanos , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...